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The intramolecular ring-closing metathesis reaction (RCM) is a
useful method for altering the conformational and metabolic stability
of R-helical peptides.1-8 Prior RCM investigations have utilized
tethers spanningi andi + 4 or i + 7 amino acid residues, a linkage
that encompasses approximately one or two turns of anR-helical
backbone and places the reactive side chains on the same side of
the helix (Figure 1). This strategy has built upon earlier work with
R-helices containing tethers employing salt bridges,9 lactams,10

disulfide bridges,11 hydrophobic effects,12 and metal ligation.13

Herein, we report the development of a minimal RCM constraint
for the 310-helix, which is a relatively common structural motif in
proteins and peptides containing CR-tetrasubstitutedR-amino
acids.14-16 The stereochemistry of the 310-helix17 suggests that its
regularity can be affected byi, i + 3 cross-links (Figure 1). This
aspect has been investigated for the case of salt18 and lactam19 side-
chain bridges. A recent theoretical study suggested that a minimal
RCM constraint for a 310-helix would require two five-atomi, i +
3 olefinic side chains, thus producing an 18-atom macrocycle upon
ring closure.20

To study this proposition in greater detail, an octapeptide with
the sequence Boc-Aib-Aib-Aib-L-Ser(Al)-Aib-Aib-L-Ser(Al)-Aib-
OMe (Boc, tert-butoxy; Aib, R-aminoisobutyric acid; Al, allyl;
OMe, methoxy) (1) was prepared using solution-phase methods.21

We chose this sequence because short oligopeptides containing Aib
residues largely populate 310-helices.14,16,22When treated with the
second-generation ruthenium catalyst4 (7 mol % of4, 5 mM in 1,
40 °C, 30 min), diene1 underwent a rapid andE-selective (>20:
1) ring-closing reaction to yield an 18-membered macrocycle in
93% yield (Scheme 1). This result is interesting becauseE/Z
mixtures are normally observed in RCM reactions between side
chains in helical peptides.1-3 The olefin moiety in peptide2 was
reduced (cat. 10% Pd-C, 1 atm H2, EtOH, 25°C, 6 h) to provide
the saturated macrocycle3 in excellent yield.

An X-ray crystallographic analysis23 (Figure 2) of peptides1-3
provided a structural comparison at each stage of the modification.
Each of the three peptides adopts a well-developed right-handed
310-helical structure. Peptide1 is 310-helical for residues 1-6 and
contains a type-Iâ-turn at the C-terminal residues 6 and 7 (a 310-
helix consists of repeat type-IIIâ-turns). This C-terminal turn
behavior is also seen in peptides2 and3, where the regularity of
the helix is slightly disturbed at residues 4 and 5, with a deviation
greater for alkene2 than for the saturated macrocycle3. Despite
these small differences, the structures are quite similar to one
another, with rms deviations for backbone atoms of 0.996 Å

between peptides1 and2 and 0.624 Å between peptides1 and3.
With the exception of the C-terminal residue 8, which is helical in
1 and2 while semi-extended in3, most of the backboneφ,ψ torsion
angle values of corresponding residues in2 and3 do not differ by
more than 10° if compared to1. For 2, the largestφ,ψ deviations
are observed at Ser(4) and Ser(7) [|∆φ|,|∆ψ| ) 22°, 39° and 14°,
16°, respectively]. For3, deviations within 10-16° are found for
ψ2, ψ5, φ6, and ψ6. As commonly found,14,16,22 all internal Aib
residues exhibitφ,ψ torsion angles typical of helical residues. In
alkene2, the 310-helical H-bonding pattern is interrupted by the
lack of the intramolecular H-bond between N6 and O3, as each of
these two atoms is intermolecularly H-bonded to a co-crystallized
solvent molecule. In3, the N6‚‚‚O3 separation, 3.573(4) Å, is only
slightly above the upper limit for a CdO‚‚‚H-N H-bond. To the
best of our knowledge, this is the first X-ray diffraction 3D structural
comparison of a helical peptide before and after installation of a
side-chain cross-link, RCM-derived or otherwise.

We note that in methanol solution peptides1-3 exhibited circular
dichroism (CD) spectra consistent with 310-helical structures24

(Figure 3). This helix is characterized by a strong negative
maximum near 205 nm and a much weaker (60-75% less intense)
negative maximum at 222-232 nm.
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Figure 1. Molecular models for (L-Ala)n R- and 310-helices. Intramolecular
hydrogen bonds are indicated with dashed lines.

Scheme 1. Synthesis of RCM Macrocyclized Peptides (E)-2 and 3
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Concerning the highlyE-selective RCM reactivity of octapeptide
diene1, we note that rapid RCM reactions and 12:1E-selectivity
are observed in a shorter sequence, the hexapeptide Boc-Aib-L-
Ser(Al)-Aib-Aib-L-Ser(Al)-Aib-OMe (5). We have also investigated
the RCM reaction in a heptapeptide with the sequence Boc-Val-
Ser(Al)-Leu-Aib-Ser(Al)-Val-Leu-OMe (6).25 When treated with
the second-generation ruthenium catalyst4 (10 mol % of4, 5 mM
in 6, 40 °C, 3 h), diene6 formed an 18-membered macrocycle in
quantitative yield with 7:1E/Z-selectivity. The origin of the higher
E-selectivity in the Aib-rich peptides may be due toφ/ψ confor-
mational restrictions imposed by the CR-tetrasubstitutedR-amino
residues. CD curves in 2,2,2-trifluoroethanol solution comparable
to those of Figure 3 have been also obtained for the RCM
macrocyclic products derived from both hexapeptide5 and hep-
tapeptide6 (spectra not shown).

In conclusion, we have shown that an RCM-derived 18-
membered macrocycle can be used to cross-link the side chains of
i andi + 3 amino acids in short 310-helical peptide sequences. The
intramolecular RCM reactions are efficient and highlyE-selective,

especially in peptides with high Aib content. In an Aib-rich
octapeptide, this macrocyclization does not significantly disturb 310-
helicity, as judged by an X-ray diffraction study of acyclic diene
1, E-olefin RCM product2, and its hydrogenated derivative3. While
other sequences (also including CR-tetrasubstitutedR-amino acids
with allyl side chains) and tether lengths remain to be studied, it is
apparent from these studies that a minimal, RCM-derived, macro-
cyclic constraint can be readily incorporated into 310-helical
peptides.
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Figure 2. X-ray crystal structures of octapeptides1-3. Hydrogen atoms
have been omitted for clarity. Dashed lines represent intramolecular
N-H‚‚‚OdC hydrogen bonds. In3, the co-crystallized water molecule (W)
is also shown.

Figure 3. CD spectra of peptides1-3 (1 mM in MeOH) at 25°C.
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