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The intramolecular ring-closing metathesis reaction (RCM) is a
useful method for altering the conformational and metabolic stability
of a-helical peptided:8 Prior RCM investigations have utilized
tethers spanningandi + 4 ori + 7 amino acid residues, a linkage
that encompasses approximately one or two turns af-aelical
backbone and places the reactive side chains on the same side of
the helix (Figure 1). This strategy has built upon earlier work with
o-helices containing tethers employing salt bridgdactams'?
disulfide bridges? hydrophobic effectd? and metal ligatiort3

Herein, we report the development of a minimal RCM constraint
for the 3¢-helix, which is a relatively common structural motif in e A ' i
pr(_)telns and peptides C(_)ntaln|ng“-(étrasubstltuted(x-amlnQ Figure 1. Molecular models fori(-Ala), a- and 3e-helices. Intramolecular
acids!#"16 The stereochemistry of theghelix'” suggests that its  hydrogen bonds are indicated with dashed lines.
regularity can be affected byi + 3 cross-links (Figure 1). This
aspect has been investigated for the case dfsaitl lactarnt’ side-
chain bridges. A recent theoretical study suggested that a minimal
RCM constraint for a g-helix would require two five-atom, i + O Me_Me H % QMo MeH @ Me Me
3 olefinic side chains, thus producing an 18-atom macrocycle upon B¢’ 7)L >\f 7)L 7)L )YN‘)L )\WOMQ T mo% 4

oM Mey  omé MeH 0y
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Scheme 1. Synthesis of RCM Macrocyclized Peptides (E)-2 and 3

ring closure?° 1 v -l
To study this proposition in greater detail, an octapeptide with
the sequence Boc-Aib-Aib-Aib-L-Ser(Al)-Aib-Aib-L-Ser(Al)-Aib- e MM
OMe (Boc, tert-butoxy; Aib, a-aminoisobutyric acid; Al, allyl; Mes—N. N-Mes )\W \)J\A'WME W)L )\rf AibOMe
OMe, methoxy) {) was prepared using solution-phase metrdds. ch. Ru:< j/ N Tgfyﬁ,‘.fé"‘c) j/ N
We chose this sequence because short oligopeptides containing Ai " bey, " 4 AbAbAH £2  EOM,25°C ADAMM 3
1l \ I 0C 95% 1l |l I 0C

residues largely populateghelices!41622When treated with the
second-generation ruthenium catal#g? mol % of4, 5 mMin 1,

40 °C, 30 min), dienel underwent a rapid anB-selective ¢ 20:

1) ring-closing reaction to yield an 18-membered macrocycle in
93% vyield (Scheme 1). This result is interesting becabsé
mixtures are normally observed in RCM reactions between side
chains in helical peptidé's2® The olefin moiety in peptid® was
reduced (cat. 10% P€C, 1 atm H, EtOH, 25°C, 6 h) to provide

the saturated macrocycin excellent yield.

An X-ray crystallographic analysi(Figure 2) of peptided—3
provided a structural comparison at each stage of the modification.
Each of the three peptides adopts a well-developed right-handed
3io-helical structure. Peptideis 3;¢-helical for residues 16 and
contains a type-B-turn at the C-terminal residues 6 and 7 (g3
helix consists of repeat type-l|f-turns). This C-terminal turn
behavior is also seen in peptid2@nd 3, where the regularity of
the helix is slightly disturbed at residues 4 and 5, with a deviation
greater for alken® than for the saturated macrocy@e Despite
these small differences, the structures are quite similar to one
another, with rms deviations for backbone atoms of 0.996 A

between peptide$ and2 and 0.624 A between peptidésand 3.
With the exception of the C-terminal residue 8, which is helical in
1 and2 while semi-extended iB, most of the backbong,; torsion
angle values of corresponding residue2 iand3 do not differ by
more than 10if compared tol. For 2, the largestp,y deviations
are observed at Ser(4) and Ser(Ad|,|Ay| = 22°, 3% and 14,
16°, respectively]. FoB, deviations within 16-16° are found for
Y2, Ps, ¢, andyps. As commonly found#1622all internal Aib
residues exhibitp,yy torsion angles typical of helical residues. In
alkene?2, the 3qhelical H-bonding pattern is interrupted by the
lack of the intramolecular H-bond between N6 and O3, as each of
these two atoms is intermolecularly H-bonded to a co-crystallized
solvent molecule. 113, the N6--O3 separation, 3.573(4) A, is only
slightly above the upper limit for a€0---H—N H-bond. To the
best of our knowledge, this is the first X-ray diffraction 3D structural
comparison of a helical peptide before and after installation of a
side-chain cross-link, RCM-derived or otherwise.

We note that in methanol solution peptides3 exhibited circular
dichroism (CD) spectra consistent withghelical structure®
(Figure 3). This helix is characterized by a strong negative

T . .
. Emgps?tycgf”%%%ova maximum near 205 nm and a much weaker<88% less intense)
8 California Institute of Technology. negative maximum at 222232 nm.
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Figure 2. X-ray crystal structures of octapeptidés 3. Hydrogen atoms
have been omitted for clarity. Dashed lines represent intramolecular
N—H---O=C hydrogen bonds. I8, the co-crystallized water molecule (W)

is also shown.
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Figure 3. CD spectra of peptide$—3 (1 mM in MeOH) at 25°C.

T T T
200 210 220 260

Concerning the highl§z-selective RCM reactivity of octapeptide
dienel, we note that rapid RCM reactions and 1Ekelectivity
are observed in a shorter sequence, the hexapeptide Boc-Aib-L-
Ser(Al)-Aib-Aib-L-Ser(Al)-Aib-OMe (5). We have also investigated
the RCM reaction in a heptapeptide with the sequence Boc-Val-
Ser(Al)-Leu-Aib-Ser(Al)-Val-Leu-OMe §).2> When treated with
the second-generation ruthenium catalf/ét0 mol % of4, 5 mM
in 6, 40°C, 3 h), dienes formed an 18-membered macrocycle in
quantitative yield with 7:E/Z-selectivity. The origin of the higher
E-selectivity in the Aib-rich peptides may be duedgb) confor-
mational restrictions imposed by the-@&trasubstituted-amino
residues. CD curves in 2,2,2-trifluoroethanol solution comparable
to those of Figure 3 have been also obtained for the RCM
macrocyclic products derived from both hexapeptidand hep-
tapeptide6 (spectra not shown).

In conclusion, we have shown that an RCM-derived 18-

especially in peptides with high Aib content. In an Aib-rich
octapeptide, this macrocyclization does not significantly distygb 3
helicity, as judged by an X-ray diffraction study of acyclic diene
1, E-olefin RCM produc®, and its hydrogenated derivati@eWhile
other sequences (also including-@trasubstitutedi-amino acids
with allyl side chains) and tether lengths remain to be studied, it is
apparent from these studies that a minimal, RCM-derived, macro-
cyclic constraint can be readily incorporated intge-Belical
peptides.
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